
How I lost 150 lbs. thanks to Max/MSP!
Back To My Routes: Freely Improvising with Max/MSP

Jeff Kaiser, (admin-{at}-pfmentum.com)

Abstract: While conferences and symposia are replete with papers and presentations with the admirable
goal of furthering the development of “software as composition,” it is less common to encounter similar
discussions of software-mediated improvisation in which the “composer” and “performer” are one and the
same person. In designing software for improvising musicians, different needs must be addressed, which
would include an individual’s unique improvisational view, idiosyncrasies of his/her instrument, and
flexibility within a variety of live performance situations (rather than repeatability within a proscenium or
otherwise controlled environment). This paper describes why I moved from a hardware-based to a
software-based music performance system, and why I chose Max/MSP as the most flexible system for
meeting my personal needs as an improvising musician.

1 Losing the stomp box: How a patch
cord paradigm saved me excess
baggage charges and personal grief on
planes, trains, and automobiles
So then, the question stands, “How does a non-
academic, free jazz, improvising quartertone
trumpet player with no computer language
programming experience, one that has been
using low fidelity guitar ‘stomp boxes’ on his
horn since the mid-1990s, get into writing his
own software?” At first, I was led to the manna
of software for purely practical reasons: I was
tired of carrying gear. However, what was
originally a practical decision soon became an
aesthetic one when I realized the advantages
presented by the open-ended nature of a modular
software program, namely, that this software
would enable me to go beyond the limitations of
the pre-existing singular functionality built into
the individual hardware based audio processing
devices (stomp boxes) I had been using for
years. Even when those stomp boxes were
physically connected together in multiples, the
possibilities nowhere approached what could be
done with a modular software program.

In the Beginning

There I am, in London, August 2005, one week
after the terrorist attacks on the subways and
busses, to do my first concerts abroad (unless
you count that strange gig in Tijuana, Mexico a
few miles south of the California border at the
old paper warehouse with Eugene Chadbourne
as “abroad”). My two gear bags weigh over 150
lbs. It is not just the stomp boxes, but also the

power supplies, power converter, plug strips,
small mixer, expression pedals, microphone, and
all the cables to connect them. Add to all that my
trumpet, flugelhorn, mutes, and clothing. I haul
all the stuff through Heathrow from the airplane
luggage retrieval area through customs, where I
am deftly and thoroughly questioned and
inspected, all the while being eyed by machine-
gun carrying gentlemen. I load the gear onto the
train and, in a comic moment worthy of a
Hollywood B movie, I delay the departure as I
get stuck in the doorway with my Pelican-style
cases preventing closure of the sliding doors. For
my reward I receive that look of condescension
that can only be delivered by natives of the
British Isles. I get off the train, and into a cab, in
which I barely fit with all my equipment. It is
quite a chore to do that on any day, but with the
remnant physical memories of the cocktails
imbibed on the flight, which co-mingle with the
leftover effects of the sleeping pill prescribed to
ease the overseas transition, it becomes an
absurdist play with my gear cases turning into
fascist rhinoceroses of independent mind and
will. That is my life for the next week: hauling
ridiculous amounts of gear from hotel to cab to
club and back again.
All the time my band mate is carrying only a
laptop bag and a horn case for his gear.

We then come to the climactic gig of the week as
opening act for legendary saxophonist (and one
of my personal musical heroes) Evan Parker, at
which point my “high end” ring modulator dies
at sound check. This forces me to re-arrange my
whole set-up, creating problems with the other

stomp boxes in gain staging and throwing me off
for the whole set. That is it. Never again. Pain
and discomfort are great motivators. I swear to
never again travel with all that hardware and,
instead, to find a solid, reliable laptop-based
solution for my love of processing my trumpet.

Little did I know, not only would I come up with
a personal solution to this situation (one
achieved by many other improvisers before me,
notably, and to impressive results, George Lewis
[Lewis 2000, 33-39] and Evan Parker) but I
would also enter into a world that would provide
me with an even greater variety of timbral and
spatial possibilities, reconnecting me with the
reason I first went into electronically processing
my trumpet.

2 Creating a software instrument to be
played, versus software that is a
performance
I am speaking here, first and foremost, about my
musical perspective as an improviser. I am a
musician, and I want to make music, not create
the latest or greatest theoretical software
construct, but a practical instrument to perform
with at nightclubs, galleries, and concert halls.
The idea is that the technology would be at the
service of artistic vision, creating a long-term
relationship with the music making—this as
opposed to the short-term relationship created
when momentarily inspired by the novelty of an
effect. This brief and torrid love affair with
novelty is most apparent in my past need (and
others) to buy the latest greatest box that does
one really neat thing to your sound. (Did I really
need that $350 step-sequencing ring modulator?)
And then it gets used to death, after which the
joy of the original novelty wears off and you’re
left with a heavy, over-used piece of obsolete
processing hardware with its boutique power
supply that won’t work on anything else and a
chunk of money gone from your banking
account.

No, I am not bitter.

So, in choosing a software-based solution and
the development of the software instrument,
considerations of the long-term artistic/musical
vision would also necessarily go hand in hand
with directly addressing the practical needs of an
improviser:

1) Variety of sound processing options

2) Immediacy of operation

3) Dynamic control (i.e. the ability to “play,”
with ease, the parameters of the given sound
processing options)

My goal, with the above three elements in mind,
was to create a single, personal software
instrument that would simply and fluidly
interface with the trumpet in a variety of
performance environments. It would become
part of the instrument, not just an added effect,
and it would be as seamless as possible in its
interactivity in an improvisational musical
setting, within the confines of the physical
restrictions imposed by my playing the trumpet.

The restrictions/constraints present in the design
and control of any software instrument used by
an instrumentalist (due to the fact that hands are
being used to play said instrument) must be
addressed. Evan Parker has solved that problem
by delegating other performers to specifically
handle the processing of the acoustic instruments
[Feller 2001, 80-82]. Another option would be to
automate the processing of audio, as woodwind
multi-instrumentalist Andrew Pask of Cycling
74 has done with his personal software system
[Pask 2005]. I also did try a few optical/video-
based controllers, but deemed them too
unreliable in crowded nightclub situations, but I
am certain this will change with time. As a
trumpet player, a small advantage (over
woodwinds and trombones) for operating the
processing equipment is that you do have one
hand free and like the other instrumentalists, if
seated, the use of both feet. So, in my desire to
keep choice and some control over the decision
making of the audio processing, and a desire to
play the software as an instrument, I decided to
go a route I was familiar with, that is, to use
pedals and buttons, a setup that would be solid,
reliable, and simple to use. Not to mention an
easy performance transition from my past use of
stomp boxes.

Practicalities would also include considerations
of cost, availability, and weight. Cost and
availability are factors because on the road
things break and need replacing, so redundant
devices would need to be carried or available at
any local music store. (This would avoid

situations such as what happened opening for
Evan Parker in London.) I consider weight an
important factor, not only because of excess
baggage charges, but also because I simply can’t
afford a roadie and it is not convenient, or
desirable, to carry large amounts of hardware.

3 Software: Why did I choose
Max/MSP?
In the past, a combination of preconceptions and
fear of programming had kept me from entering
into the software world. I had fallen into tacit
agreement with the negative perception of
modular software programs such as Max/MSP
and Pd, a perception that exists among some of
the less academically oriented improvising
musicians using electronic audio processing.
This perception is that languages such as Max
are for software based compositions, pure
academic/analytical work and meant only for the
pocket protector and slide rule class of
musicians, not for working-class players on the
street. Working and discussing with improvisers,
DJs, artists working in electronica, looping,
noise, and other forms involving the mediation
of electronics, I heard it over and over again,
“Do you want to program? Or do you want to
make music?” “Software as composition” is a
fine and admirable model, but, as I have learned,
it is only one possibility of an incredibly
versatile technology that is musically, in and of
itself, genre and intention free.

As I began searching, I immediately excluded
the more complex languages such as C++, an
obvious choice if I were a software engineer.
However, as a musician in the working world, I
needed something more readily accessible for
my personal skill set, which includes some
technological background, but no real
programming experience.

Limiting myself to the computer I owned, a
PowerBook laptop, I examined and considered
programs such as Ableton Live, Reaktor, and
various VST hosts. But I wanted something that
would allow me to create an even more unique,
idiosyncratic system that would be built
specifically around my personal needs and
artistic vision as a composer/performer.

Because I used multiple hardware looping
pedals, Radial was a possible choice as well,

with its looping features. But when I discovered
that Radial was written in Max/MSP, it pointed
me in the direction of modular software
programs. Along the way, I also looked at Pd, a
powerful, open source modular program, but
ended up choosing Max/MSP. The reason I
chose Max/MSP was because of my existing ties
to users of the application and also an active
online discussion group that I was introduced to
early on. (On its surface, the discussion group
seems to consist mostly of curmudgeons,
skeptics, cynics, a couple of drunks in a
basement in Düsseldorf, and one nice guy named
Stefan with a multitude of consonants for a last
name that are currently indecipherable by the
linguistic limitations of this writer. But the group
is a great resource, and there are some helpful
and creative folks there.)

In the beginning, keeping it real basic, I used
Max/MSP as a fully customizable VST plug-in
host. That was a great point of entry into live
processing for me, and I’ve used it to
successfully introduce others to the joy of
software based sound processing. It gets past the
whole, “Do you want to program or make
music” argument. VST plug-ins provide the
immediate musical gratification that is part of
the allure of stomp boxes, and it requires little
programming skills to set Max/MSP up to do
this. In fact, with so many pre-existing plug-ins
freely and readily available on the Internet, you
can have a basic VST host up and running in an
afternoon.

So that is why I was first attracted to Max/MSP.
The second reason was that it would, in the long
run, provide a way to create a unique voice
rather than a pre-fabricated electronic one
following someone else’s vision and design. A
simple VST host would not satisfy that desire.
With Max, as I learned, there is a great ease in
creating unique audio processing patches on a
basic level, and the ability to also create audio
patches of increasing complexity as your skills
improve organically, at a natural and individual
pace.

The first priority listed earlier is to have a variety
of signal processing options. The amount of
variety achievable by software is, of course, vast.
If you have, say, six stomp boxes, there is a
possible 720 different ways to arrange/order

those boxes. (This is just a basic reordering of
the boxes; the number does not take into account
the parameters available on each box.) But the
physical patching required to reorder these on-
the-fly at a gig would be incredibly time
consuming, taking away from the immediacy of
improvisation. So with boxes, you end up with
static ordering, limiting the timbral variety
readily available at a gig. To increase variety
with hardware, you would, obviously, have to
add boxes. Doing this adds variety but increases
the schleppage factor, i.e. increasing the amount
of gear you travel with, cables, power supplies
and the time spent plugging it all in. In my
current software instrument, I have twenty-seven
processing modules. If Google calculator is
correct, that gives a possibility of 1.08888695 ×
1028 possible ways to arrange/order the modules.
(A wee bit more than 720, and a truly
unfathomable number for a trumpet player such
as myself, hence the use of Google calculator.)
Using language as an analogy, the numerical
difference is an incredible leap in readily
available vocabulary. This variety is all possible
with the push of a button in software. In truth,
this was too vast for me. I’ve kept the modules
in serial order in my rig. But even with this pre-
determined number and order of modules,
combinations are frequently, and pleasantly
surprising. This mix of prepared/known
combinations of patches and surprise
combinations keeps one fully engaged with the
instrument. But the big selling point for me is the
ability to realize original processing ideas. This
is where other programs fall short, as their
“building blocks” are too big. The smaller
building blocks of the modular software program
enable me to create new components in a fairly
straightforward, almost intuitive way (depending
on the complexity), and deviate from the path of
being reliant on VSTs developed for other
people’s artistic needs.

So, I ended up with my current rig, a hybrid of
modules housing a variety of VSTs (that both
emulate former stomp boxes and sophisticated,
high-end, rack-mounted gear) and including
original audio processing patches that are part of
my expanding vision for performances. Over the
evolutionary period of the development of my
instrument, the interface itself has become more
“set,” developing at a slower rate, while my

development of original processing modules has
picked up. At the current pace of development I
will probably abandon VSTs entirely in the next
year.

4 Interface: The intersection of artistic
vision, musical goals, and ease of
interaction
The second priority is immediacy of operation.
The oft quoted, “In fifteen seconds the difference
between composition and improvisation is that in
composition you have all the time you want to
decide what to say in fifteen seconds, while in
improvisation you have fifteen seconds,”
attributed to Steve Lacy by Frederic Rzewski
[Bailey 1993, 141] is clever, but the truth is you
might not even have fifteen seconds.
Improvisation is about immediacy. Whether
developing an improvised solo or improvising in
a group setting, you need to be able to musically
react to your individual thought or group idea
quickly, intuitively, bordering on the instant.
Any software instrument, interface, and
controller used in improvisation needs to
accommodate this immediacy. In light of this,
the following becomes self-evident: turning
things on and off and dynamically changing
(playing) the parameters of the given module
cannot be accomplished with a mouse, track pad,
or track ball. No mouse. I’m a horn player. It is
too difficult to play and mouse at the same time.
So that means I need to get buttons and pedals
working. This is where Max and other modular
programs surpass the pre-made VST hosts I’ve
looked at. All software allows for pedals and
buttons. But in my goal of light, portable, and
reasonably priced interfaces, Max allowed me to
save a lot of weight and cost by bypassing midi
interfaces with my controller pedals. (See the
appendix for more on my use of controller
pedals.)

Other interface and hardware control
considerations: They all must be portable,
practical, reliable, rugged, replaceable, and
reasonably priced.

There is always a “better” sounding interface
than whatever you chose. There are always
controllers having more features than whatever
you chose. And there is always a techie only an
email list away that is going to tell you what you

really should have bought. But are the “better”
hardware devices right for the road?

1) Any hardware chosen for the road must be
eminently portable. Maybe if you only do one or
two gigs a year, you might not mind carrying
large pieces of gear. But with a regular
performance schedule, portability becomes a
necessity.

2) It must be practical for the club environment.
Stages, if there are stages, at nightclubs tend to
be small and tight. In this way, clubs almost
demand a de-evolution of some equipment, such
as using less pristine microphones and
interfaces. Whereas one microphone might get a
quantifiably better sound in the studio, it might
be bad onstage as it picks up every other
instrument and easily causes feedback with stage
monitors. Not to mention its fragility and
replacement cost. And high-end pre-amps and
interfaces are mostly relatively big, bulky and
fragile. So this point also cuts out the exotic.
Occam’s Razor applies to the selection of
hardware. After trying out and drooling over
high-end equipment, I ended up choosing
simple, common controllers. I am not the poster
child for conspicuous consumption in the
musical gear arena. There is a “latest and
greatest” mentality surrounding audio gear and
interfaces, but when you throw in the idea of
practicality in a club arena, the expensive stuff,
perfect for installations and performances in art
galleries and concert halls, becomes a liability.
Using the Lemur at a bar? I freak out when
someone puts a wine glass near my Oxygen 8,
but I’ve seen a milling audience member go to
set a frosted beer mug on a friend’s Lemur. (The
fan obviously mistook it for one of the other
twelve-inch LCD touch screen beer coasters
lying about.) Along this line, I also give a vote
for USB or Firewire powered devices: I once
emptied the spit-valve of my trumpet on a band
mate’s power supply which lay unnoticed at my
feet on a small stage. The “liquid” short-
circuited his interface causing his computer to
crash mid-performance—an event now known as
The Spit Incident of ’06.

3) Reliable. Goes without saying. Go too cheap
and you’ll find your gear is always breaking
down or has poorly written drivers causing
crashes.

4) Rugged. (See above mentioned “Beer on
Lemur” anecdote.) Also, Jeff’s Axiom: When
playing nightclubs, all gear placed on stands,
tables or raised supports of any kind will
eventually succumb to the combination of
gravity and a drunk fan. Which brings us to the
last required points for the gear:

5) Replaceable and reasonably priced. It must be
easy to replace. If you land in Boise, Idaho for a
gig that night and check your gear and find your
Lemur is not working, you better have a backup.
Which can be pricey. Whereas, if your controller
is something common and functional (but
certainly less hip) such as an Oxygen 8, you can
find a replacement at almost any local music
store.

5 Future directions and conclusions
I am new to this, and have made many errors
along the way of transitioning from hardware-
based boxes to software. (I would also like to
take this moment to publicly apologize for the
possible permanent damage I did to the ears of
the audience in my first laptop-based gig in
Southern California at the beginning of 2006.)
But I’ve learned this: the beauty of the software
journey is that it never ends. As you grow as an
individual musician and gain familiarity with the
program, your software instrument is able to
grow with you. And the big plus: you never end
up with a closet full of stomp boxes morosely
waiting and piling up for the sad, but inevitable,
posting on eBay.

My advice for other musicians with no software
programming experience wishing to go down the
same path is: Don’t be overwhelmed. Enjoy the
exploration of options in software packages. In
the end, choose a package that not only handles
your immediate needs, but one that can grow
with you into the future. This is why Max was a
good choice for me, as Max can be as simple or
as complex as you want it to be.

And some advice for those of you who have a
friend addicted to stomp boxes and wish to
convene an Intervention on his/her behalf: Don’t
get all complicated on them right away. If the
first thing you present to somebody interested in
a software system is a complicated and involved
patch, and they don’t have an engineering
background, I guarantee they will be intimidated

and put off. The presentation of information is
far different than actual education. Help by
giving them a simple and clear entry point,
where inquisitiveness and the possibility of the
fulfillment, even the stirring, of artistic vision
can enable the education to begin. This is part of
what kept me from moving to a software-based
system for years: I was intimidated by being
presented with so much information. But show a
person unfamiliar with audio software an
individual VST object patch, and the way to
patch a group of those together, and all of a
sudden it is simple and clear, just like plugging
in stomp boxes. After using VSTs for a while,
you begin to get ideas for your own patches.

This is the beautiful cyclical nature of art
inspiring technology, and technology inspiring
art. For me, the best part: technology allows and
encourages me to move further down the path in
the never-ending quest of fulfilling a personal
artistic vision.

Appendix: Current interfaces and
hardware controllers
With so many boutique high-end devices
available, the current selection of gear I use
might seem a bit contrarian and unevolved, but
the equipment decisions were based purely on
the pragmatic necessities set forth in this paper.
Microphone: Shure Beta 56A.
This is a decent sounding supercardioid
microphone that excels in a live environment by
providing minimum feedback and maximum
isolation from other sound sources.

Audio interface: MOTU Ultralite.
Reasonably priced, decent pre-amps, small,
light, and has many analog in and outs to support
my particular use of pedals.

Expression Pedals: Roland EV-5.
Reasonably priced, readily available. I was
originally carrying around a Doepfer Drehbank
to hook three of these into. It weighed a lot and
was really overkill with its 64 faders. In looking
to replace it, there were many custom options,
usually heavy and pricey, or the lightweight but
expensive Midi Solutions interfaces (individual
controller converter boxes). With my current
usage of five pedals, Choir Boy Andrew Pask
helped me come up with a software solution, and
I found the way to interface it: a three dollar

stereo “Y” breakout that attaches to the EV-5’s
TRS plug. One of the mono plugs then goes into
an analog output of the interface, and the other
into an analog input.

Fig. 1. Stereo “Y” breakout cable

This is light and inexpensive. No more big midi
interface bricks to carry around.

I send a [cycle~] out of the audio interface into
the EV-5 and then back into the audio interface
where [peakamp~] measures any amplitude
change introduced by the EV-5. This range of
data can then be mapped into midi data (as in
figure 2) or anything else you want it to become.
This simple little patch has done more to save
weight and hassle than any other single element
in my rig.

Fig. 2. Sine wave to data Max patch

Other controller: m-Audio Oxygen 8.
Keys provide on/off information and there are
plenty of faders for my needs. Practical,
inexpensive, and replacements are readily
available.

References
[Bailey 1993] Bailey, D., (1993). Improvisation:
Its Nature and Practice in Music. Da Capo
Press.

[Feller 2001] Feller, R., (2001). “Evan Parker
Electro-Acoustic Ensemble: Drawn Inward”,
Computer Music Journal 25.2.

[Lewis 2000] Lewis, G., (2000). “Too Many
Notes: Computers, Complexity and Culture in
Voyager”, Leonardo Music Journal 10.

[Pask 2005] Pask, A., (2005). Personal
conversations with the author.

